$m_{Earth} = 5.98 x 10^{24} \text{ kg} \qquad m_{Moon} = 7.35 x 10^{22} \text{ kg}$ 

## Worksheet 5.3

1) Two students are sitting 1.50 m apart. One student has a mass of 70.0 kg and the other has a mass of 52.0 kg. What is the gravitational force between them?  $(1.08 \times 10^{-7} \text{ N})$ 

2) What gravitational force does the moon produce on the Earth if their centers are  $3.84 \times 10^8$  m apart? (1.99x10<sup>20</sup> N)

3) if the gravitational force between two objects of equal mass is 2.30x10-8 N when the objects are 10.0 m apart what is the mass of each object? (186 kg)

4) Calculate the gravitational force on a  $6.50 \times 10^2$  kg spacecraft that is  $4.15 \times 10^6$  m above the surface of the Earth. (2.34 $\times 10^3$  N)

5) The gravitational force between two objects that are  $2.1 \times 10^{-1}$  m apart is  $3.2 \times 10^{-6}$  N. If the mass of one object is 55 kg, what is the mass of the other object? (38 kg)

6) If two objects, each with a mass of 200 kg, produce a gravitational force of  $3.7 \times 10^{-6}$  N, what is the distance between them? (0.85 m)

7) What is the gravitational force on a 70.0 kg object standing on the Earth's surface? (686 N)

8) Three 10.0 kg objects are placed in a straight line 5.00x10-1 m apart. What is the net gravitational force on the center object due to the other two objects? (0N)

9) Three objects A, B, and C are placed 0.50 m apart along a straight line. A and B have masses of 10.0 kg and C has a mass of 15.0 kg, what is the net gravitational force on B due to A and C?  $(1.33 \times 10^{-8} \text{ N})$ 



10) The force of gravity between two small masses A and B when placed very near each other is  $3.24 \times 10^{-7}$  N. What will the force between these objects be if both of their masses are doubled and the distance between them is tripled? ( $1.44 \times 10^{-7}$  N)