Worksheet 5.1

1) Calculate the centripetal force acting on a 925 kg car as it rounds an unbanked curve with a radius of 75 m at a speed of $22 \mathrm{~m} / \mathrm{s}$.
2) A small plane makes a complete circle with a radius of 3282 m in 2.0 min . What is the centripetal acceleration of the plane?
3) A car with a mass of 833 kg rounds an unbanked curve in the road at a speed of $28.0 \mathrm{~m} / \mathrm{s}$. If the radius of the curve is 105 m , what is the average centripetal force exerted on the car?
$\left(6.2 \times 10^{3} \mathrm{~N}\right)$
4) An amusement park ride has a radius of 2.8 m . If the time of one revolution of a rider is 0.98 s , what is the speed of the rider? $\quad(18 \mathrm{~m} / \mathrm{s})$
5) An electron ($\mathrm{m}=9.11 \times 10^{-31} \mathrm{~kg}$) moves in a circle whose radius is 2.00 x $10^{-2} \mathrm{~m}$. If the force acting on the electron is $4.60 \times 10^{-14} \mathrm{~N}$, what is its speed?

$$
\left(3.18 \times 10^{7} \mathrm{~m} / \mathrm{s}\right)
$$

6) A 925 kg car rounds an unbanked curve at a speed of $25 \mathrm{~m} / \mathrm{s}$. If the radius of the curve is 72 m , what is the minimum coefficient of friction between the car and the road required so that the car does not skid?
7) A $2.7 \times 10^{3} \mathrm{~kg}$ satellite orbits the Earth at a distance of $1.8 \times 10^{7} \mathrm{~m}$ from the Earth's centre at a speed of $4.7 \times 10^{3} \mathrm{~m} / \mathrm{s}$. What force does the Earth exert on the satellite?
$\left(3.3 \times 10^{3} \mathrm{~N}\right)$
8) A string can withstand a force of 135 N before breaking. A 2.0 kg mass is tied to the string and whirled in a horizontal circle with a radius of 1.10 m . What is the maximum speed that the mass can be whirled at before the string breaks?
9) A 932 kg car is traveling around an unbanked turn with a radius of 82 m . What is the maximum speed that this car can round this curve before skidding:
a) if the coefficient of friction is 0.95 ?
b) if the coefficient of friction is 0.40 ?
