\qquad
\qquad

$\mathrm{pH}-\mathrm{pOH}-\left[\mathrm{H}^{+}\right]-\left[\mathrm{OH}^{-}\right]$

1. Calculate the values of both pH and pOH of the following solutions:

	pH	pOH
a. 0.020 M HCl		
b. 0.0050 M NaOH		
c. A blood sample $7.2 \times 10^{-8} \mathrm{M}$ of H^{+}		
d. 0.00035 M KOH		

2. Find the values of $\left[\mathrm{H}^{+}\right], \mathrm{pOH},\left[\mathrm{OH}^{-}\right]$, that correspond to each of the following pH values:

	$\left[\mathrm{H}^{+}\right]$	$\left[\mathrm{OH}^{-}\right]$	pOH
a. pH of lemon juice $=2.90$			
b. pH of sauerkraut $=3.85$			
c. pH of milk of magnesia, a laxative $=10.81$			
d. pH of most orange juices $=$ 4.11			
e. pH of dilute household ammonia in windex $=11.61$			

3. Determine which of the solutions in \#2 are acidic?
4. A certain brand of rootbeer has a hydrogen concentration equal to $1.9 \times 10^{-5} \mathrm{M}$. What is the pH and pOH of this rootbeer?
5. Dr. Pepper has a $[H+]=1.4 \times 10^{-5} \mathrm{M}$. What is its pH ?
\qquad pH WORKSHEET
6. Fill in the following table:
$\left[\begin{array}{cccc} & & & \\ {\left[\mathrm{H}^{+}\right]} & \mathrm{pH} & \mathrm{pOH} & \begin{array}{c}\text { ACID } \\ \text { BASE } \\ \text { NEUTRAL }\end{array} \\ \hline\end{array}\right.$

1×10^{-3}				
	1×10^{-6}			
		9		
			9.5	
				NEUTRAL
5.0×10^{-11}				

Downloaded from this site:
www.auhsd.us/download.cfm?id=10825

